Structure Reports

Online
ISSN 1600-5368

Małgorzata Ullrich, Anna Kozakiewicz, Mirosław Wełniak and Andrzej Wojtczak*

Faculty of Chemistry, N. Copernicus University, Gagarina 7, 87-100 Toruń, Poland

Correspondence e-mail:
awojt@chem.uni.torun.pl

Key indicators

Single-crystal X-ray study
$T=20 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.124$
Data-to-parameter ratio $=25.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(+)-N, N^{\prime}-Bis[(7,7-dimethyl-2-oxobicyclo[2.2.1]-heptan-1-yl)methylsulfonyl]piperazine

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$, which was synthesized from (+)-10-camphorsulfonic acid chloride and piperazine, the central piperazine ring adopts a chair conformation. The two camphorlsulfonyl groups are bound to the piperazine N atoms in equatorial positions. The molecule has approximate noncrystallographic twofold symmetry.

Comment

Various N, N^{\prime}-dicamphorsulfonylpiperazines, including the title compound, (I), have been described earlier (Garcia \& Bermejol, 1978), but their molecular structures were never reported. According to the cited patent, this class of compounds exhibits strong central analgesic, cardiac stimulating and spasmolytic action. In addition to these physiological properties, a local anesthetic effect and remarkable anticholinergic activity were also noted. Simultaneously, they showed a very low acute toxicity. Recently, chiral sulfonamides and bis(sulfonamides) derived from camphor have received considerable attention since they can act as chiral controllers in asymmetric synthesis, both as auxiliaries and as catalysts, especially in the alkylation of aldehydes and in the arylation of prochiral ketones (Hwang \& Uang, 1998; Seydan-Penne, 1995; Royo et al., 2000; Ramon \& Yus, 1997; Yus et al., 2002, 2003; Bauer \& Gajewiak, 2003; Martinez et al., 2004).

The molecule has a non-crystallographic twofold axis running approximately through the mid-points of the piperazine $\mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{C} 13-\mathrm{C} 14$ bonds. Both the bornylsulfonyl groups are bound to the piperazine bridge N atoms in equatorial positions. The overall orientation of the camphor units relative to the piperazine bridge is similar, differing by only $12.6(2)^{\circ}$, as calculated by the dihedral angle between the $\mathrm{C} 1-$ $\mathrm{C} 7-\mathrm{C} 5$ and $\mathrm{C} 1 \mathrm{a}-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 5 \mathrm{a}$ bridges. In the crystal structure, methyl groups of the bornyl unit are positioned in the space formed by the piperazine rings of adjacent molecules.

The geometry of the bornyl unit is typical, with $\mathrm{C}-\mathrm{C}$ bond distances ranging from 1.506 (3) to 1.568 (3) \AA. The piperazine bridge has a normal chair conformation, the ring torsion angles having alternating positive and negative values ranging from 56.1 (2) to 59.5 (2) ${ }^{\circ}$. However, the angles C13-N1-C11 and $\mathrm{C} 14-\mathrm{N} 1 \mathrm{a}-\mathrm{C} 14$ are significantly larger then those

Received 11 July 2006 Accepted 22 July 2006

Figure 1
A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
reported by Wang et al. (2004) which were close to 108°. The difference seems to result from the steric effects of the sulfonic group adjacent to the piperazine N atoms.

Experimental

Piperazine ($2.56 \mathrm{~g}, 29.8 \mathrm{mmol}$) in triethylamine ($7.60 \mathrm{~g}, 75.1 \mathrm{mmol}$) was added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. A solution of $(+)-10$-camphorsulfonic acid chloride ($15.00 \mathrm{~g}, 59.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{ml})$ was then added dropwise over a period of approximately 20 min at 273 K . The reaction mixture was stirred at the same temperature for 2 h and at 253 K for 1 h . It was then quenched by pouring it into 1 M aqueous $\mathrm{HCl}(50 \mathrm{ml})$. The resulting layers were separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic solutions were washed successively with saturated aq. NaHCO_{3} solution and water $(2 \times 50 \mathrm{ml})$. After drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtering, the solvent was evaporated under vacuum. The oily residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, precipitating a solid product using a mixture of EtOAc and hexane. The filtered precipitate was crystallized from $\mathrm{CH}_{3} \mathrm{CN}$ to give 14.59 g ($28.38 \mathrm{mmol}, 95.3 \%$ reaction yield) diffraction quality crystals of (I). The melting point was measured on a Boetius apparatus and was uncorrected; m.p. 567.5-568.0 [literature m.p. 553 K (nitrobenzene); Garcia \& Bermejol, 1978]. [$\alpha]_{D}^{20} 38.7\left(c=3.60, \mathrm{CHCl}_{3}\right)$.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$
$M_{r}=514.68$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.4677$ (3) \AA 。
$b=11.1826$ (4) \AA
$c=27.0427(10) \AA$
$V=2560.70(16) \AA^{3}$

Data collection

Oxford Sapphire CCD diffractometer
$\theta / 2 \theta$ scans
Absorption correction: numerical (CrysAlis RED; Oxford
Diffraction, 2000)
$T_{\text {min }}=0.920, T_{\text {max }}=0.940$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.124$
$S=1.08$
7818 reflections
311 parameters
H -atom parameters constrained

$Z=4$

$D_{x}=1.335 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=20$ (2) K
Block, colorless
$0.34 \times 0.33 \times 0.25 \mathrm{~mm}$

25421 measured reflections 7818 independent reflections 6202 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=31.3^{\circ}$

[^1]Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

C1-C10	$1.526(2)$	C12-N1a	$1.476(2)$
C2-O1	$1.206(3)$	N1a-C14	$1.462(2)$
C10-S1	$1.773(2)$	N1a-S1a	$1.637(1)$
S1-O2	$1.416(2)$	S1a-O3a	$1.427(2)$
S1-O3	$1.428(2)$	S1a-O2a	$1.432(2)$
S1-N1	$1.638(2)$	S1a-C10a	$1.777(2)$
N1-C13	$1.464(2)$	C10a-C1a	$1.528(2)$
N1-C11	$1.474(2)$	C2a-O1a	$1.202(2)$
C11-C12	$1.523(3)$		
O1-C2-C3	$126.8(2)$	C14-N1a-S1a	$118.9(1)$
O1-C2-C1	$126.0(2)$	C12-N1a-S1a	$118.5(1)$
C3-C2-C1	$107.2(2)$	N1-C13-C14	$108.8(2)$
C1-C7-C4	$94.6(2)$	N1a-C14-C13	$108.8(2)$
O2-S1-O3	$119.6(1)$	O3A-S1a-O2a	$119.1(1)$
N1-S1-C10	$106.09(9)$	N1a-S1a-C10a	$106.06(8)$
C13-N1-C11	$113.3(2)$	C1a-C10a-S1a	$117.2(1)$
C13-N1-S1	$117.9(1)$	C4a-C7a-C1a	$93.9(1)$
C11-N1-S1	$118.9(1)$	O1a-C2a-C3a	$126.8(2)$
N1-C11-C12	$108.7(2)$	O1a-C2a-C1a	$126.6(2)$
N1a-C12-C11	$108.2(2)$	C3a-C2a-C1a	$106.6(2)$
C14-N1a-C12	$113.1(2)$		

H atoms were placed in calculated positions and treated as riding $\left(\mathrm{C}-\mathrm{H}=0.98 \AA\right.$, aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, and $U_{\text {iso }}(\mathrm{H})$ values fixed at $0.08 \AA^{2}$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2000); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

The research was partly funded by 499-Ch grant of N . Copernicus University, Toruń, Poland.

References

Bauer, T. \& Gajewiak, J. (2003). Tetrahedron, 59, 10009-100012.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Garcia, A. A. \& Bermejol, J. R. C. (1978). US Patent No. 4087425.
Hwang, C.-D. \& Uang, B.-J. (1998). Tetrahedron Asymmetry, 9, 39793984.

Martinez, A. G., Vilar, E. T., Jimenez, F. M. \& Garcia, A. M. A. (2004). Tetrahedron Asymmetry, 15, 293-298.
Oxford Diffraction (2000). CrysAlis RED and CrysAlis CCD. Oxford Diffraction, Abingdon, Oxfordshire, England.
Ramon, D. J. \& Yus, M. (1997). Tetrahedron Asymmetry, 8, 2479-2496.
Royo, E., Betancort, J. M., Davis, T. J., Caroll, P. \& Walsh, P. J. (2000). Organometallics, 19, 4840-4851.
Seydan-Penne, J. (1995). Chiral Auxiliaries and Ligands in Asymmetric Synthesis. New York: John-Wiley \& Sons.
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, H.-B., Chen, J.-H., Pu, Y.-Q. \& Wang, J.-T. (2004). Acta Cryst. E60, o2041-o2042.
Yus, M., Ramon, D. J. \& Prieto, O. (2002). Tetrahedron Asymmetry, 13, $1573-$ 1579.

Yus, M., Ramon, D. J. \& Prieto, O. (2003). Tetrahedron Asymmetry, 14, 11031114.

[^0]: © 2006 International Union of Crystallography All rights reserved

[^1]: $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0664 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }=0.001$
 $\Delta \rho_{\text {max }}=0.31 \mathrm{e}^{\AA^{-3}}$
 $\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$
 Absolute structure: Flack (1983),
 3125 Friedel pairs
 Flack parameter: -0.01 (6)

